The j-invariant of an Elliptic Curve

Dylan Pentland

20 May 2018

An important question

Question. Given a polynomial $F(x, y) \in \mathbb{Q}[x, y]$, for which $p \in \mathbb{Q}^{2}$ is $F(p)=0$?
It turns out a natural way to attack this problem is to attach a number g called the genus to F.

- $g=0$. This is form conic sections, and these will either have no rational points or the rational points will be parameterized by $q \in \mathbb{Q}$ in an easy way.
- $g=1$. These are cubic equations, and there can be finitely many rational points or infinitely many. The points have a nice group structure.
- $g \geq 2$. There are finitely many rational points (Falting's theorem).

What is an elliptic curve?

- An elliptic curve E is a curve of the form

$$
y^{2}=x^{3}+a x^{2}+b x+c
$$

- With substitutions preserving rational points, these can be put in the Weierstrass form $y^{2}=x^{3}+a x+b$.
- E must also be nonsingular. Here, this means there are no self-intersections or cusps. We can check this by letting $F(x, y)=x^{3}+a x^{2}+b x+c-y^{2}$ and checking if

$$
\nabla F=\overrightarrow{0}
$$

at any point P where $F(P)=0$, in which case E is singular.

The group structure of E

- Elliptic curves over \mathbb{Q} come equipped with a group structure of the set of rational points $E(\mathbb{Q})$.
- We add $P, Q \in E(\mathbb{Q})$ to obtain a point $R=P \oplus Q$ by taking the third intersection R^{\prime} of E and the line $\ell(P, Q)$ through P, Q. Flipping over the x axis, we obtain R.
- If $P=Q, \ell(P, Q)$ is the tangent to E. The identity is given by the point at infinity \mathcal{O} - we say $P \oplus Q=\mathcal{O}$ if $\ell(P, Q)$ fails into intersect E in \mathbb{R}^{2}.

An illustration

Addition of distinct points

Adding a point to itself

Figure 1: Elliptic curve addition (Image from [Sil09])

Elliptic curve isogenies

- An isogeny $\phi: E \rightarrow E^{\prime}$ is a rational map which satisfies $\phi\left(\mathcal{O}_{E}\right)=\mathcal{O}_{E^{\prime}}$, which reflects that ϕ induces a group homomorphism. The set of isogenies is denoted $\operatorname{Hom}\left(E, E^{\prime}\right)$. When $E=E^{\prime}$, this is $\operatorname{End}(E)$.
- Over a field K, isogenies are maps $(x, y) \mapsto(f(x, y), g(x, y))$ where f, g are in $K(x, y)$.
- We say $E \cong E^{\prime}$ if ϕ is an invertible map.
- Example: The map $[n]: E \rightarrow E$ sending $P \rightarrow n P$ is a member of $\operatorname{End}(E)$.

An isogeny invariant

Take an elliptic curve E / \mathbb{Q} and write it in Weierstrass form $y^{2}=x^{3}+a x+b$. The j-invariant is given by

$$
j(E)=1728 \frac{4 a^{3}}{4 a^{3}+27 b^{2}}
$$

Theorem

Let E, E^{\prime} be elliptic curves over \mathbb{Q}. Then $E \cong E^{\prime}$ over \mathbb{C} if and only if $j(E)=j\left(E^{\prime}\right)$. In general, given a field K and elliptic curves E, E^{\prime} over K then $E \cong E^{\prime}$ over \bar{K} if and only if $j(E)=j\left(E^{\prime}\right)$.

The \wp function

In order to motivate $j(E)$, we need to reinterpret what an elliptic curve is. To do this, we look at elliptic functions, or doubly periodic meromorphic functions. The Weierstrass \wp function describes these completely:

Theorem

Let $\Lambda \subset \mathbb{C}$ be a lattice, and let

$$
\wp_{\Lambda}(z)=\frac{1}{z^{2}}+\sum_{\omega \in \Lambda \backslash\{0\}} \frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}} .
$$

The elliptic function field for \mathbb{C} / Λ is given by $\mathbb{C}\left(\wp_{\Lambda}, \wp_{\Lambda}^{\prime}\right)$.

Elliptic curves over \mathbb{C} are complex tori

Theorem

Given a lattice $\Lambda \subset \mathbb{C}$, there is a corresponding elliptic curve E_{Λ} such that $\mathbb{C} / \Lambda \cong E_{\Lambda}(\mathbb{C})$ as groups. Given an elliptic curve E, there is a lattice Λ_{E} such that $E \cong \mathbb{C} / \Lambda_{E}$ as groups.

- The curve E_{Λ} is given by

$$
E_{\Lambda}: y^{2}=4 x^{3}-g_{2}(\Lambda) x-g_{3}(\Lambda)
$$

where $g_{2}(\Lambda)=60 \sum_{\omega \in \Lambda \backslash\{0\}} \omega^{-4}, g_{3}(\Lambda)=140 \sum_{\omega \in \Lambda \backslash\{0\}} \omega^{-6}$. The isomorphism is given by

$$
z \mapsto\left(\wp_{\Lambda}(z), \wp_{\Lambda}^{\prime}(z)\right),
$$

when $z \notin \Lambda$ and $z \mapsto \mathcal{O}$ when $z \in \Lambda$.

- We can also take any elliptic curve E and obtain a lattice $\Lambda_{E} \cong \omega_{1} \mathbb{Z} \oplus \omega_{2} \mathbb{Z}$ using integrals $\omega_{1}=\int_{\alpha} \frac{d x}{y}$ and $\omega_{2}=\int_{\beta} \frac{d x}{y}$ to obtain basis elements. Here, α, β generate $H_{1}(E(\mathbb{C}), \mathbb{Z})$.

Homothetic Lattices

We say Λ and Λ^{\prime} are homothetic if $\Lambda=\omega \Lambda^{\prime}$ for $\omega \in \mathbb{C}^{\times}$. We can equivalently characterize isomorphism classes of elliptic curves as follows:

Theorem

The complex tori $\mathbb{C} / \Lambda \cong E_{\Lambda}$ and $\mathbb{C} / \Lambda^{\prime} \cong E_{\Lambda^{\prime}}$ are isomorphic over \mathbb{C} iff Λ and Λ^{\prime} are homothetic.

Now it is very natural to consider the j-invariant from modular forms. This is defined by

$$
j(\tau)=1728 \frac{g_{2}^{3}}{g_{2}^{3}-27 g_{3}^{2}}
$$

where

$$
g_{2}=60 \sum_{(m, n) \neq(0,0)}(m+n \tau)^{-4}, g_{3}=140 \sum_{(m, n) \neq(0,0)}(m+n \tau)^{-6}
$$

Why the j-invariant is a perfect fit

We want a homothety invariant $j(\Lambda)$ such that $j(\Lambda)=j\left(\Lambda^{\prime}\right)$ iff $\Lambda, \Lambda^{\prime}$ are homothetic. Suppose we have such a function:

- If j is a homothety invariant, $j\left(\left[\omega_{1}, \omega_{2}\right]\right)=j\left(\left[1, \omega_{2} / \omega_{1}\right]\right)$.
- Consider $\tau, \tau^{\prime} \in \mathbb{H}$. If $f(\tau)=f\left(\tau^{\prime}\right)$ precisely when the lattices $[1, \tau]$ and $\left[1, \tau^{\prime}\right]$ are the same then f should be a modular function as it is invariant under the natural action of $\operatorname{SL}(2, \mathbb{Z})$. The space of such functions is $\mathbb{C}(j)$, where $j=j(\tau)$ is the j-invariant.
As a result, we know we should base $j(\Lambda)$ off of $j(\tau)$. Noticing that g_{2}, g_{3} sum over the lattice $[1, \tau]$, it is natural to define

$$
j\left(E_{\Lambda}\right)=j(\Lambda)=1728 \frac{g_{2}^{3}(\Lambda)}{g_{2}^{3}(\Lambda)-27 g_{3}^{2}(\Lambda)}
$$

where $g_{2}(\Lambda)$ and $g_{3}(\Lambda)$ are the coefficients of E_{Λ}.

- It remains to check that $j(\Lambda)=j(w \Lambda)$ - this is not too hard.

Conclusion

We can conclude the following about elliptic curves over \mathbb{Q} :

- If $j(E) \neq j\left(E^{\prime}\right)$, then certainly E and E^{\prime} are not isomorphic.
- If $j(E)=j\left(E^{\prime}\right)$, they are isomorphic over \mathbb{C} (more specifically, $\overline{\mathbb{Q}}$) but not necessarily over \mathbb{Q}. For example, take

$$
\begin{array}{r}
E / \mathbb{Q}: y^{2}=x^{3}+x \\
E^{7} / \mathbb{Q}: y^{2}=x^{3}+49 x .
\end{array}
$$

Here, $j(E)=j\left(E^{\prime}\right)=1728$. However, $E(\mathbb{Q})$ is a finite group but $E^{7}(\mathbb{Q})$ is infinite, and hence not isomorphic to $E(\mathbb{Q})$. These curves are isomorphic over $\mathbb{Q}(\sqrt{7})$.

References

- Joseph H Silverman, The arithmetic of elliptic curves, vol. 106, Springer Science \& Business Media, 2009.
图 Joseph H Silverman and John Torrence Tate, Rational points on elliptic curves, vol. 9, Springer, 1992.

